CANTCU - MaxxECU integration v1.1

- **CAN Speed** is configurable
- CAN2.0B, Standard 11bit identifiers
- All 16 bit values are Little Endian

MaxxECU Configuration

- CANTCU V1.1 needs to be selected in the CAN Powertrain controls.

🚘 CAN Bus	OEM CAN protocol	/ Disableu
CAN settings		
CAN OBD2 input	CAN Powertrain controls	
🖬 CAN Tools	Powertrain control	 CANTCU V1.1 TCU control(base id 0x450)
CAN Inputs	1 owentialit control	
na CAN Outputs	CAN ID Offset	? 0

CANTCU Configuration

- Match the CAN ID Offsets in both CANTCU and MaxxECU configurations

- CAN3 Settings-			
	CAN3 Speed	500 kb/s 🗸 🗸	
	CAN ID Offset (Base 0x450)	0	
	Default Output Protocol	Disabled ~	•
			-
	Use old v1.0 messaging layout	Disabled \checkmark	
L			-

Available Realtime-values in CANTCU (sent from MaxxECU)

- Engine RPM
- TPS Value
- Engine MAP
- Wheel Speeds
- Brake Switch
- Coolant Temperature
- Engine Oil Tempetature

Available Realtime-values in MaxxECU (sent from CANTCU)

- VSS Gear
- Gearbox Mode
- Gearbox Oil Temp
- Gearbox Calc Engine Torque
- Gearbox Engine Target Torque
- Shiftcut 0/1
- Blip 0/1
- Clutch Slip %

Extra values sent on the CAN-bus from CANTCU to aid configuration:

Rate	CAN ID	Туре	Offset (bits)	Realtime variable	Unit	Factor
50 Hz	0x450	Bit	0	TCU Cut 0/1		1
50 Hz	0x450	Bit	1	TCU Blip 0/1		1
50 Hz	0x456	UINT16	0	TCU RPM Target	RPM	1
50 Hz	0x456	UINT8	16	TCU Cut %	%	1
50 Hz	0x456	UINT8	24	TCU Blip %	%	1
50 Hz	0x456	INT16	32	TCU Delta TQ	Nm	1
50 Hz	0x456	UINT16	48	TCU Delta RPM	RPM	1
10 Hz	0x457	UINT8	0	TCU Auto/Manual		1
10 Hz	0x457	UINT8	8	TCU DL/DriveMode		1
10 Hz	0x457		16-63	RESERVED		

CAN-ID 0x456h

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
Byte 7					lta PPM		-	
Byte 6								
Byte 5					elta IO			
Byte 4								
Byte 3				TCU	Blip %			
Byte 2				TCU	Cut %			
Byte 1					A Taraot			
Byte 0					vi larger			

CAN-ID 0x457h

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
Byte 7	-	-	_	-	-	-	_	_
Byte 6	-	-	-	-	-	-	-	-
Byte 5	-	-	-	-	-	-	-	-
Byte 4	-	-	-	-	-	-	-	-
Byte 3	-	-	-	-	-	-	-	-
Byte 2	-	-	-	-	-	-	-	-
Byte 1			T	CU DL/D	riveMode	e		
Byte 0				TCU Auto	/Manual			

Configuring Extra Values (CAN Inputs)

Extra values sent from CANTCU can be imported into MaxxECU by using the **CAN Inputs**. All the parameters needed for successful configuration of the extra values can be found in the tables in this document.

An example of configuring the extra value Cut % on a CAN Input:

CAN input value 19	
CAN input value 19	
Enable	Enable, CAN Message Input 🗸
CAN Bus	CAN 1 V
CAN Message ID	0x456
Timeout	
Timeout	Disabled \checkmark
Data	
ByteOffset	2
Endian	Little endian V
Туре	unsigned 8 bit 🗸 🗸
Value conversion (analog)	
Offset	0 Value = Resolution*(Indata+Offset)*Multiplier/Divider
Multiplier	1
Divider	1
Resolution	1 (-32768 to 32767) V
Value usage (analog)	
Name	DCT Cut %
Unit	%
Destination	Not used V
Current value	Disconnected

Tuning - Shiftcut

There are several ways of achieving a proper shiftcut. By default, CANTCU sends a shiftcut request (0/1) to MaxxECU **Shiftcut Input**. This request can be combined with the various extra values available like **Cut %**, **Delta TQ**, **Delta RPM**, **Drive Mode** etc. to get a nice and versatile cut that works optimally in every situation.

- MaxxECU **Shiftcut Mode** must be configured as "Input Controlled" to let CANTCU decide the duration of the cuts.
- Cut should be enabled also without throttle input and without any delays

Shiftcut			
Shiftcut			
Enable shiftcut	Enabled		\sim
Shiftcut mode	Input controlled (Sh	niftcut input)	\sim
Cut output	Drop % with tables	~	
Shiftcut conditions			
Enable cut above TPS	0.0	%	
Enable cut above RPM	1000		
Activation delay time	0.000	sec	
Reactivation time	0.000	sec	
Max cut time	3.0		

Example configuration using F-Series DCT with cuts based on **Cut %** and **DriveLogic Level** from **CAN Inputs**

Tuning - Blips

There are many strategies available for blipping the throttle. The best way to achieve sophisticated and optimally targeted blips is to continuously vary the throttle position throughout the blip process. This functionality can be achieved in MaxxECU by using a custom blip process instead of the default built-in function (Motorsport->Throttle Blip). For the custom blip process, a **User Table** and some extra values from CANTCU assigned to **CAN inputs** are needed.

To be able to do blips without the MaxxECU default blip function, the **Overrun Cut** (if enabled) needs to be configured to deactivate overrun fuel cut during CANTCU blip requests. This can be done by adding a table to the function, and defining the **Overrun deactivation RPM** to be higher than the maximum blip RPM (e.g. 6000RPM) when CANTCU blip request (CAN input value=2) is active. The other parameters like **Activation delay** and **Cut Ramp In/Out Times** may need some tweaking, but a configuration similar to the one below should provide a good starting point.

Overrun Cut			
Overrun fuel cut			
Enable overrun fuel cut		Enabled	~
Under TPS		0.5	%
Use MAP signal		Use MAP sensor	~
Under MAP		38.0	kPa
Activation delay		0.0	sec
Cut Ramp In Time		0.300	sec
Cut Ramp Out Time		0.300	sec
Table type		Dynamic table	~
Overrun deactivation RP	M-		
? ⊢ 2 6000	RF	'M	
E E E			
Cut			

A free **User Table** needs to be enabled. The **User Table** settings can be configured freely. Using smoothing can help calm down throttle control oscillations if needed.

User table 3		
User table 3 settings		
Enable	Enabled	~
Name	Blip RPM DCT	
Unit	%	
Resolution	0.1 (-3276.8 to 327	76.7) ~
Smoothing	Enabled	~
Smoothing Alpha	30.0	%
Use as analog input function	Not used as AIN	~

The **User Table** output is a percentage added to throttle position depending on various user-definable inputs. **Delta TQ** or **Delta RPM** combined with **Engine RPM** have been proven to work nicely, but basically any combination can be used, thanks to the freely configurable axes.

User ta	able 3						
_ Use	← Usertable 3						
				(out	put value)		
	400	12.0	15.0	15.0	14.0	4D Axis:	
EZ	300	10.0	13.0	13.0	14.0	2	
al	200	8.0	13.0	13.0	14.0		
밀고	100	8.0	12.0	11.0	13.0	(Step :봄 mode) 국	
(Del	40	8.0	10.0	11.0	13.0	it cn	
V20	0	0.0	0.0	0.0	0.0	l s)	
R E	-100	0.0	0.0	0.0	0.0	N22	
User		1500	3000	4500	6000	ů Š	
	(Interpol	RPM (npm)		Use	

To activate the blip function, the **User Table** created earlier is added to **Main Throttle Target** (E-Throttle -> Throttle Targets).

Throt	tle targ	ets								
Main th	rottle targ	get								
- Mair	n throttle	target tal	ole ——			Throttla to	raat positi	op (%)		
	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
	72.0	76.7	79.0	81.2	83.4	85.7	85.7	85.7	85.7	
_	65.0	53.3	57.8	62.4	66.9	71.4	71.4	71.4	71.4	
<u>%</u>	57.1	30.0	36.8	43.5	50.3	57.1	57.1	57.1	57.1	
sition	50.0	22.5	27.6	32.7	37.8	42.9	42.9	42.9	42.9	
<u>a</u> =	38.0	10.0	13.4	21.8	25.2	28.6	28.6	28.6	28.6	
olate	25.0	3.5	7.2	10.9	12.6	14.3	14.3	14.3	14.3	
ain p terpo	6.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
≊≣	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		1000	2000	3000	4000	5000	6000	7000	8000	
	((Interpolat	ed)		RPM (npm	1)				
Extra a	diustmen	its								
	ujusunen	1.3								
Apply io	dle contro	l		Enable	ed	~	_			
Multiply	throttle b	y table %	?	Disab	ed		\sim			
Add tał	ole to thro	ttle %		User t	able 3		\sim			

NOTE!

All tuning should always be done by a professional in safe environment (track/dyno)

Before activating the blip function, it's recommended to test downshifting and verify (realtime or logging) that the user table is behaving correctly during the blip. Starting values for tuning the blip should be low and gradually increased to avoid overrevving and undesired behavior/acceleration during the shift.

